

 ©2005 by BigFix, Inc.

1

Training Guide for Writing BES
Custom Content (Windows)

BigFix, Inc.
Emeryville, CA

Last Modified: June 17, 2005
Version 5.1

 ©2005 by BigFix, Inc.

2

© 1998–2005 BigFix, Inc. All rights reserved.

BigFix®, Fixlet® and "Fix it before it fails"® are registered trademarks of BigFix, Inc. i-
prevention, Powered by BigFix, Relevance Engine, and related BigFix logos are
trademarks of BigFix, Inc. All other product names, trade names, trademarks, and logos
used in this documentation are the property of their respective owners. BigFix’s use of
any other company’s trademarks, trade names, product names and logos or images of the
same does not necessarily constitute: (1) an endorsement by such company of BigFix and
its products, and (2) an endorsement of the company or its products by BigFix.

No part of this documentation may be reproduced, transmitted, or otherwise distributed
in any form or by any means (electronic or otherwise) without the prior written consent
of BigFix, Inc. You may not use this documentation for any purpose except in
connection with your use or evaluation of BigFix software and any other use, including
for reverse engineering such software or creating compatible software, is prohibited. If
the license to the software which this documentation accompanies is terminated, you
must immediately return this documentation to BigFix, Inc. and destroy all copies you
may have. All inquiries regarding the foregoing should be addressed to:

BigFix, Inc.
5915 Hollis Street

Emeryville, CA 94608-2017

 ©2005 by BigFix, Inc.

3

Table of Contents

OVERVIEW.. 6

REFERENCES .. 6
CONVENTIONS USED IN THIS MANUAL ... 7

Examples ... 7
TYPES OF CUSTOM CONTENT... 8

What is a Fixlet® message?.. 8
Fixlet messages Vs. BES Tasks ... 8
BES Retrieved Properties ... 9
BES Custom Actions ... 9

INITIAL QUERY ANALYSIS .. 10
THE QNA PROGRAM ... 10
THE STRUCTURE OF BES RELEVANCE - OBJECT TYPES... 11
BASIC BOOLEANS .. 13

Existence ... 13
Practice with QNA:... 14
Practice Using QNA: .. 14

Comparison... 14
OPERATORS ... 15
FILE SYSTEM OBJECTS... 16

The Folder Object ... 16
Creation Methods.. 16
Properties .. 17

The File Object ... 18
Creation Methods.. 18
Properties .. 18
Practice with QNA:... 20

Plurals... 20
Applications .. 20

Practice with QNA:... 22
Versions... 22

Practice With QNA:.. 23
Operating System.. 24

Practice with QNA:... 24
Strings ... 24

Practice With QNA:.. 26
Registry Commands .. 26

Creation Methods.. 28
Properties .. 28
Practice with QNA:... 30

 ©2005 by BigFix, Inc.

4

Time... 30
Services ... 31

Creation Methods.. 31
Properties .. 32
Practice with QNA:... 33

Hardware .. 33
RAM .. 33
Processor .. 33

Creation Methods.. 33
Properties .. 34

Network Adapter ... 35
Properties .. 35
Practice with QNA:... 36

PRACTICE PROBLEM ANSWERS .. 37

ADVANCED BES RELEVANCE SYNTAX.. 42

If/Else/Then ... 42
Practice With QNA... 42

Whose/It – Filtering a list ... 43
Practice With QNA:.. 45

Whose/It – Beyond Filtering ... 46
Practice With QNA... 47

Avoiding Error Messages ... 47
Practice with QNA:... 49

Using it without a whose .. 49
Querying Multiple Properties of an Object... 49
Outputting Multiple Properties ... 50

ANSWERS TO PRACTICE PROBLEMS: .. 52

THE BIGFIX ACTION LANGUAGE.. 54
RELEVANCE SUBSTITUTION ... 55
FILE SYSTEM COMMANDS.. 55

delete ... 56
copy ... 56
move .. 56

Practice Problems.. 57
EXECUTION COMMANDS.. 58

run ... 58
wait.. 59

Practice Problems: .. 60
dos ... 60

Practice Problems: .. 61
DOWNLOADS.. 61

continue if.. 61
download... 62

Practice Problems.. 63
REGISTRY COMMANDS .. 64

 ©2005 by BigFix, Inc.

5

regset... 64
regdelete.. 65

Practice Problems: .. 66
COMMENTS .. 66

// .. 66
OTHER ACTION COMMANDS .. 66

action requires restart... 66
action may require restart .. 67
action parameter query... 67
set clock... 68
restart.. 68

Practice Problems: .. 69
PRACTICE PROBLEM ANSWERS: ... 70

APPENDIX A: QNA ERROR MESSAGES... 73

APPENDIX B: STRATEGIES FOR FIXLETS... 79
USING RELEVANCE TO CHECK FOR A CERTAIN PROBLEM ... 79

 ©2005 by BigFix, Inc.

6

Overview

The purpose of this guide is to equip the reader with the skills needed to create BES Custom
Actions, Fixlet® messages, BES tasks, and BES Retrieved Properties for the BigFix Enterprise
System (BES). The core elements of all these elements are the BigFix Relevance Language and the
BigFix Action Language. This guide outlines the most useful commands from each of these
languages and provides examples and exercises to assist with instruction.

In order to get the most out of this guide, the reader should have a working knowledge of the BES
Console and the BigFix Development Environment (BDE) if they intend to use it. Since this guide
will focus on the relevance and action languages, this information should be applicable to content
creation from either the BES Console or BDE.

In order to get the most out of this document, you will need access to the BigFix Query Analyser
(QNA), the BES Console, and BDE (if you intend to use it). You can download QNA here:

http://support.bigfix.com/fixlet/documents/qna-5.0.3.0.zip

Note that this document is far from a comprehensive resource on the relevance and action
languages. For this, please consult the references listed below.

References

The following documents should serve as valuable resources both while working through this guide
and while subsequently beginning to write custom content. They contain more examples, and
comprehensive lists of available commands and syntax:

BigFix Windows Inspector Library (http://support.bigfix.com/fixlet/documents/WinInspectors-
2004-04-07.pdf)
BigFix Windows Shell Action Commands
(http://support.bigfix.com/fixlet/documents/WinActions-2003-05-27b.pdf)
BigFix Windows Relevance Language Quick Reference Guide
BigFix Action Language Quick Reference Guide

The BigFix Windows Inspector Library is a technical document that lists the creation mechanisms
and properties of all valid objects in the relevance language. This comprehensive guide is a very
valuable resource for writing more difficult Fixlet messages. If you feel like you need a query that
isn’t mentioned in this guide, or are just curious as to what is available, the Windows Inspector
Library is the place to look.

 ©2005 by BigFix, Inc.

7

The BigFix Windows Shell Action Commands document contains most of the available actions in
the BigFix Action Language. The action section in this document contains most of the same
information and is organized in a similar manner.

The help function of BDE gives much information on various relevance commands and actions. It
contains many of the tables found in the Windows Inspector Library, along with other useful tips.
This is an invaluable resource one may use while writing Fixlet messages.

Also, the Configuration Manager page on the BigFix Support Site contains useful information. It
can be found here:

http://support.bigfix.com/fixlet/configmanager.html

Conventions Used in this manual

This document makes use of the following conventions and nomenclature:

Convention Use

Mono-space A mono-spaced font is used to indicate expressions in the
Relevance Language.

bold Bold is used to denote returned values from relevance
expressions

<angle bracket> Angle brackets are used to indicate an object type. For
instance to indicate the creation and usage of a particular
object, you might see default value of <key of
registry> which indicates that a registry key is to follow
the default value keyword.

Examples
Square bullets and a mono-spaced font denote examples of Inspectors as used in a
Relevance Expression. If you have a color version of this file, these square bullets
are also red:

 exists folder “fonts” of folder “c:\windows”

 ©2005 by BigFix, Inc.

8

Types of Custom Content

What is a Fixlet® message?

The BigFix system is a powerful support technology that allows you to create “Intelligent”
messages, which identify problems on a computer, and offer them a single-click solution. Fixlet
messages are created using the BigFix Development Environment or the BES Console, and are
generally simple and quick to produce. It is useful to think of a Fixlet message as the sum of three
constituent parts: Fixlet Relevance, Fixlet Body, and Fixlet Action.

Fixlet Relevance is the “brain” of the Fixlet message that identifies specific problem conditions
that the Fixlet describes and fixes. Fixlet Relevance is written in the BigFix Relevance Language,
and it allows Fixlet messages to target only computers with specific characteristics that indicate it
has a problem. A Fixlet is defined as ‘Relevant’ for a certain computer if all of its relevance
statements return True for that specific computer.

Fixlet Body is the text (which can be formatted using standard HTML) of the Fixlet message,
which explains the problem and gives the user any pertinent information they may need. The body
should be concise, containing only important information.

Fixlet Action is the process that solves the problem, allowing the user to click on a single link to
resolve the issue quickly and simply. A Fixlet action may only be taken on a computer where the
Fixlet is relevant.

Fixlet messages Vs. BES Tasks

BES Tasks are essentially the same as Fixlet messages, but they are a different category for
organizational purposes. By definition, Fixlet messages are meant to be an identification and
remediation of a problem. When the action of a Fixlet message is taken, it should ‘solve’ the
problem. BES Tasks, on the other hand, perform maintenance and management functions that
don’t necessarily address problems. For instance, BES Tasks can be used to deploy software,
restart services, or run backups. BES Tasks have the same makeup as a Fixlet messages (relevance,
actions, and body), and they interact with the BES Console and BES Clients in essentially the same
manner. The only functional difference is that by default Fixlet actions will report back as ‘Fixed’
once their relevance has falsified, while by default Task actions will report back as ‘Fixed’ once all
lines of its action have completed. For historical purposes, this guide will generally talk about
Fixlets, but all content is applicable to BES Tasks as well.

Here is an example of a Fixlet message as seen by a console operator. The body is the text in the
middle, and the two links that say ‘Click Here’ are actions. The other links and graphics are part of

 ©2005 by BigFix, Inc.

9

the Fixlet template, can be customized using BDE (template design will not be covered in this
guide.)

BES Retrieved Properties

Retrieved properties are an essential part of the BigFix Enterprise Suite. BES Retrieved Properties
are certain pieces of information that are gathered from each BES Client and stored in the database
on the BES Server. This information is displayed in the BES Console and can be used to define
management rights for BES Console operators and target actions to specific subsets of computers.
Retrieved properties are written in the BigFix Relevance Language. Each Retrieved Property is
simply a return value of a query written in the BigFix Relevance Language.

BES Custom Actions
A BES Custom Action contains the main constituent parts of a Fixlet message or BES Task, but is
not saved for future application. When you write a BES Custom Action, you write the relevance
and action scripts, and immediately send out the action to targeted computers. In general, you
should only use a BES Custom Action if you want to perform a quick task that you only need to do
once. Otherwise, it would be better to take advantage of the increased functionality of a Fixlet
message or BES Task.

 ©2005 by BigFix, Inc.

10

Initial Query Analysis

The BigFix Relevance Language forms that basis for most content in BES. BES Retrieved
Properties are just evaluations of a relevance query. Whether or not Fixlet® messages or BES
Tasks appear relevant in the BES Console is dictated by relevance clauses, which are written in the
BigFix Relevance Language. A Fixlet message may contain many relevance clauses, all of which
must return true for it to become ‘relevant’ for a certain computer. An expression will only lead to
a Fixlet message becoming relevant if it successfully evaluates to True. A Fixlet action cannot be
taken on a machine if any of its relevance clauses are false. This section of the guide will introduce
basic relevance queries and techniques. We recommend that the reader use QNA to try out various
queries, complete exercises, and get a general feel for the language. The QNA program is also built
into BDE as the relevance evaluator. You may access the relevance evaluator by pressing CTRL-
E.

The QNA Program

QNA is a simple program that analyzes relevance queries for the computer it is being run on. QNA
comes installed with the BDE program. Here is a quick screenshot of the QNA program:

Use of the QNA program is straightforward. Simply type ‘Q:’ followed by a relevance clause, and
click on the ‘Q/A’ button for evaluation. The QNA program can evaluate many queries at once,
and will ignore all text not preceded by ‘Q:’. Here are some useful keyboard shortcuts:

CTRL-A: Evaluate all queries.

 ©2005 by BigFix, Inc.

11

CTRL-T: Evaluate all queries and display the time needed to complete each one in microseconds.
CTRL-Q: Remove all query answers.

Although most relevance clauses take only a fraction of a second to evaluate, there are some larger
ones that may take a significant amount of time to evaluate. When creating these clauses, it’s
important to use syntax that will minimize the amount of time needed to evaluate the clause. In
many cases, two statements that seem equivalent can have very different evaluation times.
Evaluation time can always be checked in QNA by using CTRL-T.

Before we get into specifics, try re-creating some of simple queries above. Get QNA to display the
amount of your computer’s RAM and the name of its operating system. Also, use CTRL-T to see
how long it takes each one of these queries to evaluate.

Besides being a useful training tool, the QNA program will prove invaluable when one is creating a
custom content. It’s a good way to figure out how relevance can be used to detect a problem, and
can help throughout the entire debugging process.

Note! There is a problem with copying text from Microsoft Word into QNA. If you have an
electronic version of this document and you try to copy relevance statements into QNA, the
quotation marks won’t evaluate correctly. You will need to manually erase and retype quotation
marks in the QNA program for the evaluation to work.

The Structure of BES Relevance - Object
Types

The BES Relevance Language is build upon a multitude of objects and their various properties.
Possibly one of the most difficult parts of writing relevance is keeping different objects straight.
There are many types of objects (strings, integers, registry objects, versions, etc.), but sometimes it
can be difficult to figure out which object type you have and which you need. It is useful to think
of the BES Relevance Language in terms of objects and properties. Most queries are properties of
an object that produce another object. Since the Windows Inspectors Library is organized
according to objects, let’s a take a look at a piece of it.

 ©2005 by BigFix, Inc.

12

This is a snapshot of the part of the Windows Inspector Library that deals with the <environment
variable> object. As you can see, it is divided into two sections: Creation Methods and Properties.
The ‘Creation Methods’ section tells you all the ways you can produce an <environment variable>
object. In order to create an <environment variable> object you form a query of the form:

 variable <string> of <environment>

 where the <string> is the name of the environment variable, and <environment> is the object
corresponding to the environment. You could also get a list of all your environment variables by
typing:

 variables of environment

If you were unsure how to create an <environment> object, you could look up the section of the
Windows Inspectors Library that about the <environment> object, and look at the Creation
Methods. As it turns out, you create an <environment> object by just writing environment. For
instance, you could create an <environment variable> object corresponding to the computer name
with the following query:

 variable “Computername” of environment

From here you could query the various properties of the <environment variable> object. In order to
return the name or value of the environment variable, you would use the following commands,
respectively:

 ©2005 by BigFix, Inc.

13

 Value of varaiable “computername” of environment

 Name of variable “compuername” of environment

As you can see from the chart, each of the command returns an object of type <string>. As I
introduce the various commands, I’ll try to make a note of what object we’re dealing with. As I
mentioned before, a comprehensive list of objects in the BES Relevance Language can be found in
the BigFix Windows Inspectors Library. Also, the inspector library lists the object type of the
parameter and return value for every command. The inspector library may be extremely useful if
you find yourself having difficulties with object types.

TIP! Relevance expressions often fail because you pass the wrong object type to a command as a
parameter. A great troubleshooting mechanism for relevance is to look at each command within a
relevance clause and make certain that each command is getting passed the correct object type.

Basic Booleans

Many different types of information about a computer can be garnered from a relevance expression.
Since for Fixlet messages we eventually want a complete relevance clause to return a Boolean
True or False, let’s first look at operators that return a Boolean value. Although there are a few
inspectors that return a Boolean value, there are two main ways to obtain a Boolean value:
existence and comparison. You will use one of these tools in most relevance clauses.

Existence

In its most basic form, a relevance expression can check for the existence of an object on the users’
computer. Let’s say that you to write a Fixlet that would be relevant on all computers with
“autoexec.bat” located at the root directory of the “c:” drive. The following would be the relevance
statement:

 exists file "c:\autoexec.bat"

In this case file "C:\autoexec.bat" defines a <file> object. (We’ll go over the <file>
object in more detail shortly.) The result of the exists operator is a boolean value. In this case, it
would return true if the file exists or false if it doesn't. Therefore, a Fixlet message with the
example relevance clause would cause all computers with the file “autoexec.bat” at the root of their
“c:” drive to report as relevant. You can also check for a folder using similar syntax:

 Exists folder “c:\temp”

 ©2005 by BigFix, Inc.

14

Practice with QNA:
Using QNA, try checking for the existence of various files and folders on your computer. Later,
we’ll learn other objects we can check, and we’ll learn tricks to get around typing the complete
pathname of a file. Can you answer the following questions about your computer using QNA?
(Note: Answers to all the practice problems are available at the end of each section.)

Practice Using QNA:

Comparison

The second basic form of a Relevance clause involves the comparison of two expressions:

Here's an example of this form using an equal sign as the comparator:
 number of processors = 2

The result is true only if both expressions are equal to each other. If they are not equal -- or if there
is some kind of error -- the expression will be false. Here’s an example of comparing two
relevance expressions using a ‘greater than’ sign:

 Version of file “c:\temp\prog1.exe” > version of file
“c:\temp\prog2.exe”

We will explore the version command a bit later.

Here is a list of all of the comparators that can be used in the Relevance Language, with examples
of how they can be used:

 =
!=
<
>
<=
>=

5/2 = 2.5
5/2 != 3
5 < 6
6 > 5
5 <= 6
6 >= 6

1. Does the folder “c:\winnt” exist on your computer?

2. Does this folder contain “explorer.exe”?

Link to Answers

 ©2005 by BigFix, Inc.

15

contains
does not contain
does not end with
does not equal
does not start with
ends with
equals
is
is contained by
is equal to
is greater than
is greater than or equal to
is less than
is less than or equal to
is not
is not contained by
is not equal to
is not greater than
is not greater than or equal to
is not less than
is not less than or equal to
starts with

"xyz" contains "y"
"xyz" does not contain "bc"
"xyz" does not end with "abc"
"abc" does not equal "Abc"
"abc" does not start with "bc"
"abc" ends with "bc"
5 = 4+1
1 is 1
"y" is contained by "xyz"
1 is equal to 1
2 is greater than 1
"banana" is greater than or equal to "apple"
4 is less than 5
5 is less than or equal to 5
1 is not 0
"fuz" is not contained by "foo"
"foo" is not equal to "bar"
"foo" is not greater than "bar"
5 is not greater than or equal 4
5 is not less than 3
5 is not less than or equal to 5
"good" starts with "goo"

Operators

The examples in the comparator list above represent simple relevance clauses. However, larger
Relevance clauses can be more complicated, describing very specific computer configurations and
processes. When dealing with these more complex Relevance clauses, it is often useful to break
them down into smaller expressions. In some cases, more complex expressions can themselves be
broken down into simple "sub-expressions”. Each of these expressions and sub-expressions must be
linked together with “operators”. Operators tell the Relevance Language how to relate two
expressions or sub-expressions.

For example:
 1 + 1

 length of file "c:\autoexec.bat" / 512

 number of files of system folder mod 10

Here is a list of all of the operators in the Relevance Language:

 ©2005 by BigFix, Inc.

16

(
)
*
/
+
-
&

mod
not
and
or

begin sub-expression
end sub-expression
integer multiply
integer divide
integer plus
integer minus
string concatenate
integer modulo
boolean negate
logical and
logical or

File System Objects

Using the Relevance Language, a multitude of information can be inspected from a computer. A
complete list of inspectors would take up many pages, so instead I’ll try to introduce some of the
more common inspectors and their uses. For a detailed list of every inspector, please refer to the
Windows Inspector Library.

The Folder Object

The <folder> object refers to a folder in the windows operating system. The most common
creation methods are:

Creation Methods

 ©2005 by BigFix, Inc.

17

Here are some syntax examples:

 Exists folder “C:\Program Files\BigFix”

 Exists parent folder of system folder

The windows folder and system folder commands are special queries that return a
<folder> object corresponding to the windows or system folder. Since these folders are located in
different locations for different operating systems, these commands are very useful.

An important note on the <folder> object is that is has no default return value. Therefore, if you
construct a query that returns a <folder>, the query will return an error. Instead of returning a
<folder>, you have to return a property of a folder. Here are a few common properties of a
<folder>.

Properties

 ©2005 by BigFix, Inc.

18

As you can see, parent folder of <folder> and folder <string> of folder
both return <folder> objects, so they are creation methods as well. Syntax examples:

 Name of windows folder = “WINDOWS”

 Pathname of parent folder of system folder = “C:\WINDOWS”

The File Object

Possibly the most basic object in the relevance language is the <file> object. The most common
creation methods for a <file> are:

Creation Methods

In the first example, the <string> is the complete path of the file. For instance,

 Exists File “c:\windows\notepad.exe”

Since files and folders are not always in the same place on every computer, and it would be
difficult to always write relevance that refers to a file that you want to analyze by a specific
pathname. Also, you cannot find a file of an unknown location by simply searching through the
file system, as this would be an incredible drag on system resources of the computer running the
BES Client. Fortunately, while the main ways of creating a <file> object are to use the path of the
file or its containing folder, you can generally find this information without needing to hard-code
paths. Also, there are special commands for applications that assist with locating many files. We’ll
take a look at these shortly. First, however, let’s examine some properties of a <file>.

Properties

 ©2005 by BigFix, Inc.

19

Here are examples of each of these inspectors, along with some sample return values from QNA:

 ©2005 by BigFix, Inc.

20

As you can see, the phrase file “mshtml.dll” of system folder defines a <file>
object, from which various properties are queried. The sha1 inspector stands for ‘Secure Hash
Algorithm’, and it is a simple checksum that is used to verify the integrity of downloaded files.
You will need to use this along with the size inspector to create downloads in a Fixlet action.

Practice with QNA:

Plurals

Most objects can be made plural by adding an ‘s’ at the end of them. If a plural query returns
multiple results, it will return a list with all the possible return values. Later on, we will look at
how to filter a list. Syntax Examples:

 Files of windows folder

 Names of files of system folder

You can query the number of items in a list using the number of command.

 Number of folders of system folder

Applications

The relevance language can access certain applications without knowing the path to their
executable. An <application> object inherits all the characteristics of the <file> object for the
application’s executable. For all practical purposes, you can think of an <application> as simply
being a nifty way to access the executable file for a program.
The three main types of applications recognized by the relevance language are registered
applications (regapps), running applications, and recent applications.

3. What is the version of the file “tcpip.sys”? This file is located in the folder
“Drivers”, which is in the system folder.

4. Write a relevance statement that will only return true if the size of the file “url.dll”
is 106496 and its sha1 is b53aadb418dfb956e7aebef60d924ef990f919e6. Url.dll
is found in the system folder. Since a sha1 hash is a string, it must be entered in
quotes in a relevance statement.

Link to Answers

 ©2005 by BigFix, Inc.

21

Programs that are installed correctly according to windows guidelines create a key under the key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths.
Applications that have a key entry here can be accessed using the regapp command:

 Version of regapp “BesClient.exe”

 Pathname of regapp “outlook.exe”

Here are some examples of the regapp command.

As I mentioned before, the parent folder command errors out if used by itself because it
returns an object type of “folder”, which has no specified display value. Instead, you have to
return a certain characteristic of the folder by using name of parent folder or pathname
of parent folder, etc.

You can use all the same commands for running or recent applications. You can see a list of all
your regapps, running, or recent applications by using the following commands:

 Regapps

 Running Applications

 Recent Applications

 ©2005 by BigFix, Inc.

22

Note! The running and recent applications inspectors do not quite work correctly in QNA. This list
of running and recent applications does not always get updated while running a session of QNA, so
you have to close and re-open the program to get an updated list of running applications.

Practice with QNA:

Versions

As we’ve seen before, a version is a property of a file. Querying the version of a file returns a
<version> object.

 version of file “cmd.exe” of system folder

 version of regapp “bde.exe” > “2.0”

The <version> object has a few special properties, and since its so commonly used it’s worth going
into it in some detail. A version consists of up to four integers separated by periods, such as
5.01.235.435. When comparing versions, the Relevance Language compares the four integers one
by one, from the left to the right. It considers two versions as equal if all available integers are
equal. For instance, “5.1” < “5.10”, since 5=5 but 1<10. This comparison is somewhat different
than if we were dealing with similarly formed strings. This is all a bit easier to explain by example:

5. Do you have more files in your windows folder than you have recent
applications?

6. List all the pathnames of your running applications.
7. List all your regapps. Pick one and display its pathname and parent

folder. (Two separate clauses)

Link to Answers

 ©2005 by BigFix, Inc.

23

As you can see, the comparisons work a bit differently if you are working with strings or versions.
The main difference is that you can just check the major version of a file by comparing it to a single
integer. You can cast a string into a version by using the as version command, and vice versa.

One more important thing to note about versions is that the version inspector doesn’t always
return exactly the same version as you would see by right-clicking a file and selecting ‘properties’.
Usually, the difference is something seemingly trivial such as trailing zeroes, but this can make a
big difference when comparing versions. Whenever possible, check a file version using QNA to
make sure you know the version as interpreted by the Relevance Language.

TIP! Not all files have versions. You can check with the query exists version of file
<filename>

Practice With QNA:

8. What is the version of your “regedit.exe” file?
9. What is your version of Internet Explorer? (Hint, it’s a regapp)
10. Formulate a relevance expression to check whether one has IE5, and another one

to see if they have IE6?
11. Write a relevance expression to check the version of the file “msoe.dll”, which is

a file used by Outlook Express. This file will be in the same folder as the regapp
“msimn.exe”. Hint: use parent folder of regapp

Link to Answers

 ©2005 by BigFix, Inc.

24

Operating System

You can create an <operating system> object corresponding to the local OS by simply writing
operating system. The two most common expressions involving the <operating system>
object are:

 Name of operating system

 Csd version of operating system

Name of operating system returns a string based on the operating system. Possible return
values for this query on windows operating systems are WinNT, Win95, Win98, WinME,
Win2000, WinXP, Win2003.

Csd version of operating system returns a string containing the service pack of the
operating system. In general, the return value of csd version of operating system
returns a string of the form of Service Pack X where X stands for the number of the service pack.
Here are some syntax examples:

 csd version of operating system = “Service Pack 1”

 csd version of operating system = “”

If there is no service pack, the csd version is just an empty string, “”.

Practice with QNA:

Strings

12. What service pack are you running?
13. How would you check to see if a computer had any service pack installed?

Link to Answers

 ©2005 by BigFix, Inc.

25

So far we’re seen many objects that either require strings for their creation or output their properties
as string, so we may as well address them directly. A string is simply a text expression, and it is
entered into a relevance statement surrounded by quotes.

Since strings are so prevalent, there are many commands that are used to extract specific
information from a string. When you want to use these commands, it is important to make sure
you’re dealing with a string. More complicated expressions also make use of the <substring>
object, which is useful for parsing strings. Other types of objects can be converted to strings using
the as string command. Here are some useful commands:

 First/Last <integer> of <string>

Returns a substring of the first/last <integer> of characters of the string

 <string1> (contains/starts with/ends with) <string2>

This will return a boolean value based on whether or not <string1> contains/starts with/ends with <string2>.

 following text of <substring> of <string>

Returns <substring> corresponding to the part of the original string that follows the named
substring. For more information on using substrings, please see the Inspector Library.

Also, you can concatenate a string using the & operator.

The following QNA example should make these commands a bit more clear:

 ©2005 by BigFix, Inc.

26

It can take a little practice to learn how to extract the correct information from a string, but
eventually it becomes second nature.

Practice With QNA:

Registry Commands

14. Write a relevance statement that will return true on all Windows operating
systems.

15. Write a relevance expression that will output just the number of the installed
service pack.

16. Create another relevance statement that will output the version of msoe.dll. This
time, however, don’t use the parent folder of regapp command.
Instead, create the full path to the file direct by parsing the pathname of the regapp
msimn.exe and concatenating the correct filename onto the end.

Link to Answers

 ©2005 by BigFix, Inc.

27

When writing relevance, the Windows registry can be a gold mine of information. The registry is a
database contained in every Windows operating system that stores data about a computer. The
registry is organized into a tree of folders called keys. A key can have many subkeys, which can
have many subkeys, etc. Each key can contain information in the form of values. You can see or
edit the registry by running the regedit.exe program, which is included with Windows. You can
run it by going to Start>Run> and type “regedit”.

Note! Be careful when working in regedit or using .reg files. A wrong move could damage your
computer irreparably.

 ©2005 by BigFix, Inc.

28

Creation Methods

Key Phrase Form Description

key <string> of
<registry key>

Named Creates an object for the named sub-key of the key.

key <string> of
<registry>

Named Creates an object for the named key. The name
may be a full path to a key of the form
"HKEY_CLASSES_ROOT\Fixlet.Pool\".

All registry commands must originate from a <registry> object. Fortunately, a <registry>
object is created by simply writing registry.

Properties

Key
Phrase

Form Return Type Description

key
<string>
of
<registry
key>

Named <registry
key>

Returns a key for the named sub-key.

name of
<registry
key>

Plain <string> Returns the name of the key as a string.

value
<string>
of
<registry
key>

Named <registry key
value>

Returns the named value stored under the key. See
registry key value.

Like the <folder> object, the <registry key> object has no default return value.
Therefore, a registry command that returns a <registry key> object will error out.
Instead, you need to query the name of the key or a value in the key. Here are some
syntax examples.

 exists key
“HKEY_LOCAL_MACHINE\SOFTWARE\BigFix\Enterprise
Server” of registry

 ©2005 by BigFix, Inc.

29

 value "IsInstalled" of key
"HKLM\SOFTWARE\Microsoft\Updates\
DataAccess\Q318203" of registry = 1

Basically, you just need to keep two things in mind to avoid making syntactical mistakes
while forming registry queries.

1. All values and key names must be surrounded by quotes.
2. It’s necessary to write of registry after the key name.

As you may have noticed from the examples, you can abbreviate the hives of the
Registry. Here are the abbreviations:

HKEY_Classes_Root = HKCR
HKEY_Current_User = HKCU
HKEY_Local_Machine = HKLM
HKEY_Users = HKU
HKEY_Current _Config = HKCC

Tip: Values from the registry are pre-defined as registry objects. Basically, this just
means that, even if they look like a string, folder, or time, you have to cast the value into
the type you want. You can do this by using the commands as time, as folder,
and as string. Take a look at this QNA example:

 ©2005 by BigFix, Inc.

30

As you can see, in order to perform a string operation (first 3 of) on a registry
value, I had to use the as string command. In order to look for a file within the
folder, I could either cast the value as a string and use the folder command (which
expects a string as its argument), or I could simply cast it as a folder. One exception to
this rule is Reg_Dword values, which return as integers.

Note! The BigFix Enterprise client runs its queries as the System user. Therefore, a
Fixlet message inspecting HKCU will report values for the system user, not the currently
logged in user.

Practice with QNA:

Time

There are a number of times that can be analyzed using the Relevance Language. The
simplest command is the now command, which just returns the current time according to
the operating system’s clock.

Q: now
A: Mon, 03 Feb 2003 16:30:08 –0800

Time is displayed in the following format (MIME standard):

ddd, DD mmm YYYY HH:MM:SS sZZZZ

d = Day of the week
D = Day of the month
m = Name of the Month
Y = Year
H = Hour
M = Minute
S = Second
sZZZZ corresponds to the time zone.
For instance , -0800 corresponds to 8
hours before Greenwich Mean Time.
(US Pacific Time)

17. Write a command that will return true if a user has ever installed a certain Internet
Explorer patch on their computer. The following key will get created once the patch
in installed: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active
Setup\Installed Components\{2298d453-bcae-4519-bf33-1cbf3faf1524}

18. Now check to see if the patch is actually installed at the moment. If it is, it will have a
Dword value of “IsInstalled” set to 1.

19. Find the version of wab32.dll, a component of the Windows Address Book. You can
find the complete path to this file by checking out the following key-
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WAB\DLLPath. Hint: You can
query the default value of a key using default value of <registry key>.

Link to Answers

 ©2005 by BigFix, Inc.

31

Here are a few inspectors that return a time:

 Modification time of file

 Creation time of file

 Accessed time of file

 Boot time of operating system

The modification time inspector is probably the most useful, as it can be used to
compare two different files that either have the same version or no version. When two
times are compared, the greater time is defined as being more recent. The sum or
difference of two times gives an answer in days, hours, minutes, and seconds. (of the
form dd:hh:mm:ss.sss) Here are some examples:

 modification time of regapp "NsRex.exe" < "Thu, 01
Jun 2000 00:00:00 -0800" as time

 modification time of file “file.dll” of system
folder > creation time of “file.dll of system
folder

 now – modification time of file
“c:\bigfix\subscribe.dll” > 3*day

One can compare the difference of two times to days, hours, or seconds. As shown
above, this data type is constructed by <integer>*<time interval>. Available
time intervals are microsecond, millisecond, second, minute, hour, day, week. Also, if
you want to type a time into a relevance clause (or extract one from the registry), as in the
first example, you need to cast it as a time by writing as time.

Services

The Relevance Language can query installed services on a computer.
Creation Methods

Key Phrase Form Description

running service PlainGlobal Creates objects corresponding to all the running
services.

running service <string> NamedGlobal Creates the running service object for the specified
name.

service PlainGlobal Creates objects for all the services.

service <string> NamedGlobal Creates the service object matching the specified

 ©2005 by BigFix, Inc.

32

Key Phrase Form Description

name, regardless of its running state.

You can see a list of services or running services by evaluating the queries services
and running services respectively. Here are some examples:

 Exists service “BesClient”

 Exists running service “Messenger”

Properties

Key Phrase Form Return

Type
Description

display name of
<service>

Plain <string> Returns the display name of the service.

login account of
<service>

Plain <string> Returns the login account under which the
service is configured to run.

state of <service> Plain <string> Returns one of Continuing, Pausing,
Paused, Running, Starting, Stopping,
Stopped, Unknown.

Here are some more examples:

 State of service “DCHP” = “Running”

 Login account of service “Messenger”

Note: You can gain additional information about services and make changes in their
settings using the registry keys located at:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\

 ©2005 by BigFix, Inc.

33

Practice with QNA:

Hardware

There are a number of inspectors that investigate the hardware of a machine. Since these
are generally used less frequently than the software inspectors, I’ll just go over few of the
more common examples.

RAM

You can return the amount of RAM on your computer using the command:

 Size of ram

This command returns an <integer> corresponding the amount of Ram in bytes. If you
want to return the amount of Ram in MB, you can divide by (1024*1024).

 Size of ram / (1024*1024)

Processor

The <processor> object refers a processor on the computer.

Creation Methods

20. What time is it now?
21. How long has it been since explorer.exe has been modified?
22. Has it been more than a day since the computer has been started. Hint: boot

time of operating system gives the time of last boot.
23. What is the state of the Task Scheduler service on your computer? (Note, ‘Task

Scheduler’ is the Display Name, not the service name.)

Link to Answers

 ©2005 by BigFix, Inc.

34

Key Phrase Form Description

main processor PlainGlobal Creates the object associated with the
'Primary' processor. On most systems this is
the only processor.

processor PlainGlobal Iterates through the processors in the system.

processor <integer> NumberedGlobal Creates the processor object for the number
specified. The first processor is processor
number 1.

On single-processor machines, the easiest way to create a <processor> object is simply to
write processor.

Properties

Key Phrase Form Return

Type
Description

family name of
<processor>

Plain <string> Returns the family name of the CPU, e.g.,
• Athlon,
• Duron,
• Pentium 4.

vendor name of
<processor>

Plain <string> The manufacturer of the CPU. Names include:
• GenuineIntel,
• AuthenticAMD,
• CyrixInstead,

speed of <processor> Plain <hertz> Returns the speed of the processor in Hertz. This
inspector measures the speed if the vendor name
is GenuineIntel.

Here are some syntax examples:
 vendor name of processor = “GenuineIntel”

 Family name of main processor = “Pentium M”

It is important to notice that the speed of <processor> command returns not an <integer>,
but a <hertz> object. The <hertz> object is especially formulated for easy conversion to
Mhz, Khz, or Ghz. For instance, if

 Speed of processor

Returns 600000000 hertz, then

 ©2005 by BigFix, Inc.

35

 Speed of processor / Mhz

Will return 600.

Network Adapter

You can create a <network adapter> object by writing adapter of network. Since
there are frequently multiple network adapters present on computers, you may want to
make this statement plural to see all the adapters:

 Adapters of network

Properties

Key Phrase Form Return
Type

Description

address of <network
adapter> ‡

Plain <ipv4
address>

Returns the ip address of the network
adapter (returns the first address if it is a
list).

description of
<network adapter> ‡

Plain <string> Returns the description of the network
adapter.

dhcp server of
<network adapter> ‡

Plain <ipv4
address>

Returns the ip address of the dhcp server of
the network adapter.

dns server of
<network adapter> ‡

Plain <network
address
list>

Returns a list of DNS servers used by the
specified adapter.

Here are some syntax examples:

 Addresses of adapters of network

 Description of adapter of network

 ©2005 by BigFix, Inc.

36

Practice with QNA:

24. How much RAM do you have on your computer? Output the results so they
look like this: 256 MB RAM

25. Write a relevance expression that will only be true if your processor is made by
Intel and its speed is less than 800 Mhz.

26. Write a query to output the dhcp servers of all your network adapters.

Link to Answers

 ©2005 by BigFix, Inc.

37

Practice Problem Answers

1. Does the folder “c:\winnt” exists on your computer?

 Exists folder “c:\winnt”

2. If so, does this folder contain “explorer.exe”?

 Exists file “explorer.exe” of folder “c:\winnt”

OR
 Exists file “c:\winnt\explorer.exe”

These statements will always return the same value, but the second example
evaluates in significantly less time. Referencing a file by complete pathname is
usually the quickest way to access it.

3. What is the version of the file “tcpip.sys”? This file is located in the folder
“Drivers”, which is in the system folder.

 Version of file “tcpip.sys” of folder “Drivers” of
system folder

4. Write a relevance statement that will only return true if the size of the file “url.dll”
is 106496 and its sha1 is b53aadb418dfb956e7aebef60d924ef990f919e6. Url.dll is
found in the system folder. Since a sha1 hash is a string, it must be entered in quotes
in a relevance statement.

 Size of file “url.dll” of system folder = 106496
AND sha1 of file “url.dll” of system folder =
“b53aadb418dfb956e7aebef60d924ef990f919e6”

Note: Later we’ll get around having to say file “url.dll” of system
folder multiple times.

5. Do you have more files in your windows folder than you have recent applications?

 number of files of windows folder > number of
recent applications

6. List all the pathnames of your running applications.

 ©2005 by BigFix, Inc.

38

 Pathnames of running applications

7. List all your regapps. Pick one and display its pathname and parent folder. (Two
separate clauses)

 Names of regapps

 Pathname of regapp “bde.exe”

 Pathname of parent folder of regapp “bde.exe”

8. What is the version of your “regedit.exe” file?

 Version of file “regedit.exe” of windows folder

9. What is your version of internet explorer? (Hint, it’s a regapp)

 Version of regapp “iexplorer.exe”

10. Formulate a relevance clause to check whether one has IE5, and another one to

see if they have IE6?

 Version of regapp “iexplorer.exe” = “5”

 Version of regapp “iexplorer.exe” = “6”

11. Write a relevance expression to check the version of the file “msoe.dll”, which is
a file used by Outlook Express. This file will be in the same folder as the regapp
“msimn.exe”. Hint: use parent folder of regapp

 Version of file “msoe.dll” of parent folder of
regapp “msimn.exe”

 ©2005 by BigFix, Inc.

39

12. What service pack are you running?

 Csd version of operating system

13. How would you check to see if a computer had any service pack installed??

 Csd version of operating system != “”

14. What relevance would return true for all Windows Operating Systems?

 Name of operating system contains “Win”

15. Write a relevance statement that would output just the number of the service pack

 Last 1 of csd version of operating system

16. Create another relevance statement that will output the version of msoe.dll. This
time, however, don’t use the parent folder of regapp command.
Instead, create the full path to the file direct by parsing the pathname of the
regapp msimn.exe and concatenating the correct filename onto the end.

 Version of file (preceding text of last “\” of
pathname of regapp “msimn.exe” & “\msoe.dll”)

17. Write a command that will return true if a user has ever installed a certain Internet

Explorer patch on their computer. The following key will get created once the
patch in installed: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active
Setup\Installed Components\{2298d453-bcae-4519-bf33-1cbf3faf1524}

 Exists key
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active
Setup\Installed Components\{2298d453-bcae-4519-
bf33-1cbf3faf1524}” of registry

 ©2005 by BigFix, Inc.

40

18. Now check to see if the patch is actually installed at the moment. If it is, it will

have a Dword value of “IsInstalled” set to 1.

 Value “IsInstalled” of key
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active
Setup\Installed Components\{2298d453-bcae-4519-
bf33-1cbf3faf1524}” of registry = 1

19. Find the version of wab.dll, a component of the Windows Address Book. You
can find the complete path to this file by checking out the following key-
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WAB\DLLPath. Hint: You
can query the default value of a key using default value of <registry
key>.

 Version of (value of key
“HKLM\Software\Microsoft\WAB\DLLPath” of registry
as file)

20. What time is it now?

 Now

21. How long has it been since explorer.exe has been modified?

 Now – modification time of file “explorer.exe” of
windows folder

22. Has it been more than a day since the system has been restarted?

 now – boot time of operating system > 1*day

23. What is the state of the Task Scheduler service on your computer? (Note, ‘Task
Scheduler’ is the Display Name, not the service name.)

 ©2005 by BigFix, Inc.

41

 State of service “Schedule”

24. How much RAM do you have on your computer? Output the results so they look

like this: 256 MB RAM

 ((Size of RAM / (1024*1024)) as string) & “ MB RAM”

25. Write a relevance expression that will only be true if your processor is made by

Intel and its speed is less than 800 Mhz.

 Vendor name of processor = “GenuineIntel” AND speed
of processor /Mhz < 800

26. Write a query to output the dhcp servers of all your network adapters.

 Dhcp servers of adapters of network

 ©2005 by BigFix, Inc.

42

Advanced BES Relevance
Syntax

If/Else/Then

The BES Relevance Language supports basic if/then/else logic within a single relevance
statement. The general syntax is:

 If <boolean> then <object> Else <object>

The <objects> returned after then and else can be the result of a longer query, but
they must both return the same object type. Here’s an example:

 If exists regapp “besconsole.exe” then version of
regapp “besconsole.exe” as string else “BES Console
Not Installed”

This statement will output the version of the BES Console if it is installed. Otherwise it
will return BES Console Not Installed. As I mentioned before, the return types from the
clauses after then and else must be the same. In order to ensure this, I had to cast the
version into a string in the then clause. You can nest multiple if/then/else statements
together. Here’s an example:

 If exists regapp “wmplayer.exe” then version of
regapp “wmplayer.exe” as string else if exists
regapp “mplayer2.exe” then version of regapp
“mplayer2.exe” as string else “Media Player Not
Installed”

This statement will output the version of Windows Media Player for recent versions that
use the ‘wmplayer.exe’ executable or older versions that use the ‘mplayer2.exe’
executable. If/Then/Else formulations are most useful for creating retrieved properties,
since you can use them to ensure that the property never returns an error.

Practice With QNA

 ©2005 by BigFix, Inc.

43

Whose/It – Filtering a list

Iterative relevance clauses allow one to look for objects with certain characteristics out of
a group of objects. The group can consist of files, registry keys, registry values, and
more. To make an iterative relevance clause, you will need to use special syntax built
into the Relevance Language using the keywords whose and it. In its most general
case, a whose clause is used to filter a list. First, let’s start with a general list:

 Files of windows folder

This query, of course, outputs a list of all the files in the windows folder. Now say that
instead of all the files, you just wanted files with a certain characteristic. That’s where
the whose clause comes in. Let’s say that we just wanted to output the files in the
windows folder that have a version of less than 5.0:

 Files whose (version of it < “5.0”) of windows
folder

This clause iterates through all the files in the windows folder and only returns the ones
for which the whose clause returns true. In this example, it refers to the <files> in the
windows folder. The following graphic should be helpful:

1. Write a query that will return the service pack of the operating system if it
exists. Otherwise, the query should return “No Service Pack”

2. Write a query that will return the number of processors on the machine.
However, if the system has 1, 2, or 4 processors the statement should return
‘Single’, ‘Dual’ or ‘Quad’ respectively. Here are some examples of the
output format

1 processor – “Single Processor”
2 processors – “Dual Processor”
3 processors – “3 Processor”
4 processors – “Quad Processor”
5 processors – “5 Processor”

Link To Answers

 ©2005 by BigFix, Inc.

44

Next, I’ll try to clarify further with a more general discussion on the formulation of
whose clauses. As we’ve mentioned many times before, the relevance language us built
upon querying properties of objects (resulting in other objects). A general clause may
look something like this:

 ‘Property’ of <object> of <object>

 Names of keys of key “HKLM\Software\...” of registry

In a query such as this, the expression will return the final property(ies) that are queried.
In the above example, this corresponds to the names of all the subkeys of the key
“HKLM\Software...” Now, say we wanted to filter our results so that we only returned
the names of keys with particular characteristics.

 ‘Property’ of <object> of <object>

 Whose (exists ‘Property’ of it)

 Names of keys of key
“HKLM\Software\CurrentControlSet\Services” of registry

There are a couple important notes to make about the contents of the parenthetical
statement following whose. First, of all, it must return a boolean value. Next it needs
to contain it, where it refers to the object directly preceding whose. (Technically
speaking, the clause doesn’t have to contain it, but otherwise the formulation is useless.)
Continuing with the above example:

 ‘Property’ of <object> whose (exists ‘Property’ of it) of <object>

 Names of keys whose (value “Start” of it = 2) of
key “HKLM\Software\CurrentControlSet\Services” of registry

 ©2005 by BigFix, Inc.

45

The above example will output the names of the subkeys of the key
“HKLM\Software\CurrentControlSet\Services” that have a value named “Start” set to 2.
This corresponds to all services that start automatically when the computer starts.

Here are a couple more examples:

 Names of files whose (name of it as lowercase
contains ".dll" AND version of it <"4.4.0.3396") of
parent folder of regapp "conf.exe"

This example would return the names of all the .dll files in the same location as
“conf.exe” who have a version less than 4.4.0.3396. In this example, it refers to all
files in the parent folder of the file conf.exe. As you can see, the parenthetical statement
after whose can have multiple expressions linked together; they just must return a
boolean value in the end. Here’s another example:

 number of keys whose (name of it contains
"Microsoft SQL Server 2000" and name of it does not
contain "Analysis Services") of key
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Curr
entVersion\Uninstall" of registry

This example would return the number of SQL Server 2000 instances installed on the
computer. Here, it refers to all subkeys of the registry key
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall.

Practice With QNA:

 ©2005 by BigFix, Inc.

46

Whose/It – Beyond Filtering

While in the examples above we were using a whose/it formulation to filter a list, we can
use the same syntax to check for the existence of a single object. In this case, you apply
the filter to a single object instead of a list in order to find out if this object complies with
the demands of the filter. Here’s an example:

 Exists file “mshtml.dll” whose (version of it <
“5.0.2600.1528”) of system folder

This example checks to see whether there is any file named ‘mshtml.dll’ in the system
folder that has a version less than 5.0.2600.1528. Here, it refers to the file
“mshtml.dll”. The nice thing about this formulation is that will not error out if
mshtml.dll does not exists or if it doesn’t have a version. Let’s quickly compare this to
the previous method for doing this type of query. In most cases, the below statement will
evaluate the same way as the above one

 Version of file “mshtml.dll” of system folder <
“5.0.2600.1528”

However, there are some key differences. The second statement will error out if the file
“mshtml.dll” does not exists in the system folder, if it doesn’t have a version. On the
other hand, the whose statement will never error out (on windows machines). In order
to maintain the same level of error-checking robustness without a whose clause, you
would need to write

 Exists file “mshtml.dll” of system folder AND
exists version of file “mshtml.dll” of system
folder AND version of file “mshtml.dll” of system
folder < “5.0.2600.1528”

3. How many executables do you have in your Windows folder?
4. How many files have the same modification and creation time in your windows

folder?
5. What is your version of Microsoft office? Try to formulate this using a whose clause.

Again, you can look at the following location in the registry:
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uni
nstall” Try to see if you can iterate through the subkeys of this key, finding the one
corresponding to Microsoft Office, then output the version. This technique is useful
because the name of the key tends to differ based on the version. Hint: When
analyzing the Name value of the keys, make sure the value exists and is a string.

Link To Answers

 ©2005 by BigFix, Inc.

47

As a point of reference, the whose statement evaluates in about a third of a time as the
above clause.

Practice With QNA

Avoiding Error Messages

So far, we’ve generally assumed that all relevance queries will return good, clean results.
Yet with all languages, there are some queries that will simply return errors. What if you
ask the version of a file that doesn’t exist? What if you query the value of a key that
doesn’t exist? These are things you’ll need to do, but you need to make sure these errors
don’t hurt the intended usage of your relevance. Let’s take a look at an example. Say
you have a patch that will close a security vulnerability that exists if you have an older
version (less than 9.0.0.3000) of either Microsoft Word or Microsoft Outlook on your
computer. You’ll need to check both programs, but you need to be careful. For the
following QNA example, the user has Word installed but not Outlook.

6. Write a relevance statement that will return True if a computer has a version of the
BES Console less than 5.0.3.0. The BES Console is a regapp named
‘BESConsole.exe’. Write the statement using a whose clause such that it won’t fail
if the BES Console doesn’t exist.

Link To Answers

 ©2005 by BigFix, Inc.

48

Some of these results may seem a bit strange. Since the regapp “outlook.exe” doesn’t
exist, the Relevance Language returns an error message when we query its version. If
this error is the first expression in a Boolean statement with ‘or’ or ‘and’, the whole
statement will return an error. It is important to note that if an entire relevance clause
returns an error, a Fixlet message will never appear relevant. Let’s take a look at the
results:

 (version of regapp "outlook.exe" < "9.0.0.3000") OR
(version of regapp "winword.exe" < "9.0.0.3000")

This is BAD RELEVANCE! While it obviously wants to see if either Word or Outlook
is out of date, it will error out if Outlook doesn’t exist. It is good form to always check
for the existence of a file or registry key before you query it. Here are some better
examples:

 (exists regapp “outlook.exe” and version of
regapp “outlook.exe” <

 ©2005 by BigFix, Inc.

49

”9.0.0.3000”) or (exists regapp “winword.exe” and
version of regapp “winword.exe” < “9.0.0.3000”)

 exists regapp “outlook.exe” whose (version of it
< “9.0.0.3000”) OR exists regapp “winword.exe”
whose (version of it < “9.0.0.3000”)

Both these examples check for the existence of both programs instead of just querying the
versions. They are equivalent in what value they will return, but take somewhat different
time to evaluate. In fact, the second clause takes about 75% of the evaluation time of the
first clause. Under normal circumstances, they both are so quick that the evaluation time
doesn’t really matter, but if we were checking 200 files instead of two, we’d need to be
very careful. Try plugging the two above statements into QNA to check how long they
take to evaluate (CTRL-T).

Note! You can troubleshoot errors in QNA using the reference in Appendix A of this
document.

Practice with QNA:

Using it without a whose

Querying Multiple Properties of an Object

Another use of this syntax involves using the it command without a whose command
to make a list of desired properties. First, let me show a trivial use of the it command
that will hopefully make this technique more clear. You can use it of
<object(s)> to refer to an object or number of objects. For instance,

 it of files of system folder

is the same as
 files of system folder folder

7. Let’s say you want relevance to check for a version of Internet Explorer less than
6.0.2800.1106. For the purposes of this example, we’ll want it to be true if either the
regapp or the registry says the version is less than desired. Write relevance with the
proper error-checking to check for this. You should be able to find the version of internet
explorer at the value “Version” of the following key:
“HKLM/Software/Microsoft/Internet Explorer”

Link To Answers

 ©2005 by BigFix, Inc.

50

While at first glance this doesn’t seems very useful, it has a number of useful
consequences. Let’s take a quick example. Say that you wanted to check that a computer
had Windows XP Service Pack 1 installed. We’ve learned that you can check for this
with:

 Name of operating system = “WinXP” AND csd version
of operating system = “Service Pack 1”

You may have notices that we had to write operating system twice, which seems
necessary. We can write relevance more easily using it.

 (Name of it = “WinXP” and csd version of it =
“Service Pack 1”) of operating system

In this example, it refers to operating system. This may be somewhat confusing
because in the whose/it clauses, it referred to the object before the whose, which
was before the parentheses. When there is no whose, it refers to the object after the
parentheses. As is shown in the example above, you usually use it within a
parenthetical statement that has multiple expressions. In many cases, similar relevance
clauses can be written in multiple ways. For instance, the following three relevance
statements will usually evaluate the same:

 Version of file “mshtml.dll” of system folder < “6”
AND size of file “mshtml.dll” of system folder <
54321

 (Version of it < “6” AND size of it < 54321) of
file “mshtml.dll” of system folder

 Exists file “mshtml.dll” whose (version of it < “6”
AND size of it < 54321) of system folder

As long as ‘mshtml.dll’ exists in the system folder, these expressions will all evaluate the
same. The last expression has the advantage that if mshtml.dll doesn’t exists it will
evaluate to false, while the others will error out.

Outputting Multiple Properties

Often it is useful to output multiple properties of an object in either a retrieved property
or in a QNA query. For instance, say you wanted to query the names and versions of all
your regapps.

 (name of it & “ – “ & version of it as string) of
regapps

 ©2005 by BigFix, Inc.

51

When evaluated in QNA or used as a retrieved property, this will give you a list of the
names and versions of all the regapps separated by a hyphen. Here it refers to
regapps. Technically speaking, this statement iterates through all the regapps, and for
each of them it evaluates the parenthetical statement. This parenthetical statement
concatenates the name of the regapp, a hyphen, and the version of the regapp, and then
outputs the final string.

 ©2005 by BigFix, Inc.

52

Answers to Practice Problems:
1. Write a query that will return the service pack of the operating system if it exists.

Otherwise, the query should return “No Service Pack”

 If csd version of operating system != “” then csd
version of operating system else “No Service Pack
Installed”

2. Write a query that will return the number of processors on the machine.

However, if the system has 1, 2, or 4 processors the statement should return
‘Single’, ‘Dual’ or ‘Quad’ respectively. Here are some examples of the output
format

1 processor – “Single Processor”
2 processors – “Dual Processor”
3 processors – “3 Processor”
4 processors – “Quad Processor”
5 processors – “5 Processor”

 (if number of processors = 1 then "Single" else if
number of processors = 2 then "Dual" else if number
of processors = 4 then "Quad" else number of
processors as string)& " Processor"

3. How many executables do you have in your Windows folder?

 Number of files whose (name of it as lowercase
contains “.exe”) of windows folder

For whatever reason, some files will return their names in capital letters
and some in lowercase. To find all the executables, you’ll generally need
to use the as lowercase command.

4. How many files have the same modification and creation time in your windows

folder?

 Number of files whose (modification time of it =
creation time of it) of windows folder

5. What is your version of Microsoft office? Try to formulate this using a whose

clause. Again, you can look at the following location in the registry:
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\

 ©2005 by BigFix, Inc.

53

Uninstall” Try to see if you can iterate through the subkeys of this key, finding
the one corresponding to Microsoft Office, then output the version. This
technique is useful because the name of the key tends to differ based on the
version. Hint: When analyzing the Name value of the keys, make sure the value
exists and is a string.

 Value "DisplayVersion" of key whose (exists value
"DisplayName" of it and value "DisplayName" of it
as string contains "Microsoft Office") of key
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Curr
entVersion\Uninstall" of registry

6. Write a relevance statement that will return True if a computer has a version of

the BES Console less than 5.0.3.0. The BES Console is a regapp named
‘BESConsole.exe’. Write the statement using a whose clause such that it won’t
fail if the BES Console doesn’t exist.

 exists regapp "Besconsole.exe" whose (version of it
< "5.0.3.0")

7. Let’s say you want relevance to check for a version of Internet Explorer less than
6.0.2800.1106. For the purposes of this example, we’ll want it to be true if either
the regapp or the registry says the version is less than desired. Write relevance
with the proper error-checking to check for this. You should be able to find the
version of internet explorer at the value “Version” of the following key:
“HKLM/Software/Microsoft/Internet Explorer”

 (exists regapp “iexplorer.exe” and version of
regapp “iexplorer.exe” < “6.0.2800.1106”) OR
(exists key “HKLM\Software\Microsoft\Internet
Explorer” of registry and exists value “version”
whose (it < “6.0.2800.1106”) of key
“HKLM\Software\Microsoft\Internet Explorer” of
registry)

 ©2005 by BigFix, Inc.

54

The BigFix Action Language

Scripts written in the BigFix Action Language allow you to remediate problems or
change the configuration of computers running the BES Client. Along with relevance,
actions are the other main part of BES Tasks, Fixlet® messages and Custom Actions.
Actions run like a script, executing the code of the action language one line at a time. In
general, the Action language is very simple yet allows you to perform varied and
complex tasks. If you want to use other scripts/programs to remediate issues, you can
always call these programs from within a BES Action.

There are a few caveats that we should cover before we dive into the language.
First of all, an error in one line of an action script will usually terminate the script, and
the rest of the lines will not run. Because of this, it’s very important to utilize error
prevention methods in action scripts. Next, debugging actions can sometimes be difficult
because there is no QNA-type tool to evaluate Fixlet actions. Instead, you’ll need to
make a custom Task or Fixlet in order to test your actions while they are in development.
In order to do the exercises in this section, it would probably be helpful to create a BES
Custom Action, Task, or Fixlet message to test them out. As with relevance, becoming
proficient at Fixlet message actions takes some time. Fortunately, the common actions
most people will use (such as downloading and applying a patch) are very simple.

One nice thing about Fixlet message actions is that all parameters can be defined by
relevance. You can include relevance expressions in actions by surrounding them with
curly braces {}. A working knowledge of the Relevance Language will make writing
actions much easier.

This guide doesn’t give a complete list of all the action commands. Instead, it just
includes the most useful ones, which a beginning BES Custom Content author will
probably use most. A more comprehensive guide is the BigFix Windows Shell Action
Library (http://support.bigfix.com/fixlet/documents/WinActions-2003-05-27b.pdf). That
document contains much of the same information as here, but contains more commands
and technical details. There is also a comprehensive action library contained in the BDE
help feature.

I’d also like to stress the fact that it is important for your actions and relevance to work
together. Remember that applying a action should falsify the relevance of your Fixlet
message or BES Task.

 ©2005 by BigFix, Inc.

55

Relevance Substitution

As I mentioned above, one of the main strengths of the BigFix Action Language is its
ability to evaluate relevance statements as part of its operation. You can include
relevance statements in an action script by enclosing them in curly braces {}. When an
action script is run that contains relevance, this relevance is interpreted and placed into
the script before the script is executed. For instance, say you wanted to run a script by
calling cscript.exe, which is located in the system folder. You could write

 Run {pathname of system folder}\cscript.exe

On Windows XP, the actual script that would run is

 Run c:\windows\system32\cscript.exe

This technique is extremely powerful because it allows you to run scripts on computers
with many different configurations.

File System Commands

The File System Commands will enable you to define a button or link to process files on
the user’s computer.

The following pages present the delete, copy, move, open, and download
commands. One important thing to note is that in a Fixlet action, there is a default
location for the working directory of the action. This default location is the location of
the site directory on the hard drive.

C:\Program Files\BigFix Enterprise\Enterprise Client__BESData\<sitename>

Note! For all commands that take a path as a parameter, you must use quotation marks
around the path if it has any spaces in it. Otherwise, the quotation marks are optional.

 ©2005 by BigFix, Inc.

56

delete

The delete command deletes the named file. Any script with the delete
command will terminate if the file exists but cannot be deleted. This can happen
due to write protection or an attempt to delete from a CD-ROM, for instance. If
the file does not exist at all, however, the script will continue to execute.

SYNTAX

EXAMPLE
 delete “c:\program files\bigsoftware\module.dll”

 delete “{name of drive of windows folder}\win.com"

copy

They copy command copies the source file to the named destination file. A script
with the copy command terminates if the destination already exists or if the copy
fails for any other reason such as when the destination file is busy.

SYNTAX

 copy “{name of drive of windows folder}\win.com" “{name of
drive of windows folder}\bigsoftware\win.com"

 delete “c:\windows\system\windir.dll”
copy “__Download\windir.dll”
“c:\windows\system\windir.dll”

It is important to note that the copy command will kill the entire action script if it fails.
For this reason, it is recommended that you use a delete command before every copy
command, just to make sure the script doesn’t error out. The second example above
illustrates this.

move

The move command moves the source file to the named destination file. This
command also provides “rename” type functionality. A script with the move
command terminates if the destination exists or the move fails.

Keyword Parameters
delete “FileName”

Keyword Parameters
copy “Source_FileName” “Destination_FileName”

 ©2005 by BigFix, Inc.

57

SYNTAX

EXAMPLE
 move “c:\program files\bigsoftware\module.dll”
“c:\temp\mod.dll”

 delete “c:\updates\q312456.exe”
 move “__Download\q312456.exe”
“c:\updates\q312456.exe”

 delete “c:\temp\new_name.doc”

move “c:\temp\old_name.doc” “c:\temp\new_name.doc”

Again, it is good practice to use a delete command before every move command. The
first two examples are actually moving files around, while the third example renames a
file by moving it to the same directory.

Practice Problems

Keyword Parameters
move “Source_FileName” “Destination_FileName”

 ©2005 by BigFix, Inc.

58

Execution Commands

run

The run command executes the indicated process or program. If the process
can't be created, the script is terminated. Run does not wait for the process to
terminate before executing the next line of the script. The command line contains
the name of the executable and may optionally contain parameters. If you want to
wait for one program to finish before starting another one, use the wait
command (see below).

SYNTAX

EXAMPLE
 run “c:\program files\Microsoft Office\Office\excel.exe”

 run “c:\winnt\ftp.exe” ftp.sonic.net

TECHNICAL NOTE

This command has the same effect as issuing a CreateProcess("CommandLine")
statement from Windows API. This is also the same as using CommandLine in
the Windows RUN dialog.

Keyword Parameters
Run <command line>

1. Write a custom action to perform the following actions:

- Rename the file “test1.txt” within the directory “C:\Windows” to “test2.txt” (You
can rename a file my moving it to the same directory with a new name)

- Create a backup copy of “test2.txt” called “test2bak.txt” within the same directory
(Remember to use a ‘delete’ command before you move or copy)

You’ll have to create the file “test1.txt” to test this action. Write relevance such that
the action will only run if “test1.txt” exists and will fix once test1 goes away.

2. How would I copy the file “acpi.sys” from the <system>\drivers folder to “c:\”?
Write relevance to ensure “acpi.sys” exists in the system folder and that it does not
exists in “c:\”. (Remember you can substitute relevance in curly braces {} to find
variables like the system folder)

Link to Answers

 ©2005 by BigFix, Inc.

59

See the Windows documentation on CreateProcess for a discussion of the method
used to locate the executable from a CommandLine.

wait

The wait command behaves the same as the run command, except that it waits
for the completion of its process or program before continuing. One thing to keep
in mind is that the wait command only waits for the explicit process it calls to
finish before continuing. For instance, if you use wait to open an executable
which in turn opens another executable, the action script will continue after the
first executable completes.

SYNTAX

EXAMPLE
 wait scandskw.exe
run {pathname of system folder & “\defrag.exe”}

TECHNICAL NOTES:

This has the same effect as issuing a CreateProcess("CommandLine") statement
from the Windows API, and then waiting for completion.

The working directory for all actions is:

%install path of BES Client%__BES Data\[Fixlet Site Name]

For instance, for Fixlet in the Enterprise Security Site where the BES Client is installed
into the default directory, the path is:

C:\Program Files\BigFix Enterprise\BES Client__BES Data\Enterprise Security

The ‘site’ for actions created using custom content is the actionsite. Therefore, the
working directory for an action originating from custom content is:

C:\Program Files\BigFix Enterprise\BES Client__BES Data\Actionsite

Keyword Parameters
Wait <command line to execute program>

 ©2005 by BigFix, Inc.

60

Practice Problems:

dos

The dos command issues a standard DOS command. If the DOS command fails,
the script that contains it is terminated.

SYNTAX

EXAMPLE

 dos rmdir /Q /S {pathname of windows folder &
“\temp\BigFixQ322273}

 dos scandisk.exe e:

In the last example, e: is a parameter passed to the scandisk program.

TECHNICAL NOTES:
This has the same effect as issuing a system("DosCommandLine") statement from
the Windows API. It is also the same as typing the DosCommandLine to a DOS
prompt.

The dos command uses the PATH environment variable to locate the command
on the user's hard drive. If you want any it to look elsewhere, you must specify a
complete pathname.

The most commonly used DOS commands are:

 Dos net start

 Dos net stop

 Dos mkdir

Keyword Parameters
Dos <DOS command line syntax>

3. Write a custom Task that will add the contents of a .reg file ‘c:\test.reg’ to the
registry. This is done by running the regedit.exe program, passing in test.reg as
a parameter. Regedit.exe is in the windows folder. In order to make regedit.exe
run silently, you can use the –s switch. Write relevance to make sure test.reg
exists. In order to test this action, you’ll have to create test.reg on a test
computer. Note: this relevance will not falsify.

Link to Answers

 ©2005 by BigFix, Inc.

61

 Dos rmdir

Practice Problems:

Downloads

continue if

The continue if command will enable execution to continue on to the next
command in the action script if the value provided as a parameter evaluates to
true. It will stop without error if the specified expression evaluates to false. You
can use relevance substitution to compute the value.

SYNTAX

EXAMPLE
 continue if {name of operating system = "Win2k"}

 download http://www.real-
time.com/downloads/win98/dun40.exe

continue if {(size of it = 325904 and sha1 of it =
"013e48a5e71acb10563068fbdd69955b893569dc") of file
"dun40.exe" of folder "__Download"}

wait __Download/dun40.exe /Q:A /R:N

Keyword Parameters
Continue if relevance condition to evaluate

4. Write a custom task to restart the DHCP service. Send ‘net start’ and net stop output to a log
file located at “c:\BESlogs\DHCPlog.txt”. You can send output to a file using the ‘>’ and ‘>>’
dos commands. You’ll need to create the directory “c:\BESlogs”. For this exercise, just get
the action right- we’ll worry about relevance next.

5. Write relevance for the above task. This task should be relevant as long as the DHCP service
is running. Also, have the relevance check the log file so that once the service has restarted
successfully, the task becomes non-relevant. You can do this by checking that line 5 of the file
contains “The DHCP Client service was stopped successfully”.

Link to Answers

 ©2005 by BigFix, Inc.

62

action requires restart

download

The download command downloads the file indicated by the URL. The file is
saved in a directory named "__Download" (the name begins with two
underscores) relative to the local folder of the Fixlet® Site that issued the
download command.

For the BigFix Enterprise Client, the default download directory is:
C:\Program Files\BigFix Enterprise\Enterprise Client\ __BESData\ <sitename>
__Download

If the download fails, the script terminates. The name of the file is derived from
the part of the URL after the last slash.

For instance, consider the command:

 download
ftp://ftp.microsoft.com/deskapps/readme.txt

The action example above downloads the readme.txt file from the Microsoft site
and automatically saves it in the local __Download folder as readme.txt.

SYNTAX

EXAMPLE
 download http://download.bigfix.com/update/bf1504.exe

This command directs the downloaded file to the default site __Download folder.

 download

http://download.microsoft.com/download/a/8/c/a8c904e2-
7955-47e2-a2ae-e7f6490eee95/WindowsServer2003-
KB840374-x86-ENU.EXE

continue if {(size of it = 658672 AND sha1 of it =
"fadc782accb64bbec95027d353e2903129d40eb3") of file
"WindowsServer2003-KB840374-x86-ENU.EXE" of folder
"__Download"}

Keyword Parameters
Download [options] File_URL

 ©2005 by BigFix, Inc.

63

wait __Download\WindowsServer2003-KB840374-x86-ENU.EXE
/passive /quiet /norestart

This is the standard format for performing a download and then running the downloaded
program. Downloads are actually “prefetched” by the BES Server and delivered to the
clients before the action begins to run. The continue if statement (which I will
formally introduce later) is used here to ensure that the downloaded file has the expected
size and Sha1 hash. When the continue if statement shown above is used after a
download, the downloaded file is saved on the BES Server and referenced by its sha1
hash. If a file with the correct Sha1 is already on the BES Server, the clients will just get
the file from it. BES Relays also cache downloads.

Tip! In order for the mirror server to correctly download a file, the syntax of the
Continue If statement must be exactly as above. Any minor error will cause the
server to think that the downloaded file is incorrect and the action will fail. I recommend
that you simply copy and paste the appropriate size, and sha1, and file name into every
continue if statement that you write. There is also a program called “sha1.exe” that
will output a complete continue if statement for a given file.

You can download “sha1.exe” here:

http://support.bigfix.com/fixlet/documents/sha1.exe

You can get sha1.exe to output a complete continue if statement using the
following syntax:

 Sha1.exe –r <filename>

Practice Problems

6. Try writing a Fixlet message to install a Microsoft security patch . Write the
download command, the continue if statement, and then run the patch. Use the
patch found here: http://download.microsoft.com/download/a/f/a/afa937e7-e7f4-4fe8-
8324-6e322f7ab542/WindowsXP-KB840374-x86-ENU.EXE. You can run it silently
by using the following command line switches: /silent /norestart. The Fixet message
should be relevant if the following key does not exist:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\Windows
XP\SP2\KB840374

Link to Answers

 ©2005 by BigFix, Inc.

64

Registry Commands

Note: When using registry action commands, you can’t abbreviate the root key like you
could when writing relevance. For instance, you must write out
‘HKEY_LOCAL_MACHINE” instead of using “HKLM”.

regset

The regset command sets a registry key to the given name and value. If the key
doesn't already exist, this command creates the key with this starting value.

SYNTAX

These values are entered just as they are in a registry file, in keeping with the
rules for Regedit, the Windows program that edits the registry. String entries are
offset by quotes, and the standard 4-byte integer (dword) is entered in
hexadecimal with leading zeroes.

EXAMPLE
 regset
"[HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Word\Se
curity]" "Level"=dword:00000002

 regset "[HKEY_CURRENT_USER\Software\BigFix Inc.]"
"testString"="bob"

NOTE: Registry commands must be formulated exactly as above. The existence
or lack of white space can cause the command to fail. For instance, there must be
no white space around the equals sign.

TECHNICAL NOTES
Notice in these examples that square brackets [] are used to enclose the name of
the registry key. Again, this is in keeping with the rules for Regedit files. This
syntax is necessary for the regset command, but not for registry Inspectors.

When you use the BigFix regset command, keep in mind that the BigFix client
dynamically builds the .reg file that you would have had to create manually to
update the registry and then it executes that resulting .reg file for you. One of the
rules of the .reg file is that any \'s in the data value need to appear as double
slashes, that is \\. So if you were trying to assign the value SourcePath2 of the
registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

Keyword Parameters
Regset <“registry key”> <“value name”>=<value>

 ©2005 by BigFix, Inc.

65

NT\CurrentVersion to c:\I386, the command that you would define would look
like this:

 regset "[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion]" "SourcePath2"="c:\\I386"

To get around this annoyance, you can use the ‘Escapes’ relevance command.
This command takes a string and puts in the extra slashes. For instance:

 Escapes of “c:\program files\bigfix” =
“c:\\program files\\bigfix”

regdelete

The regdelete command deletes a registry key value of the given name. If the
value doesn't already exist, this command will fail and all subsequent commands
will not be executed.

SYNTAX

Example
 regdelete
"[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Vx
D\IOS” "NoIDE"

 regdelete “[HKEY_CLASSES_ROOT\ShellScrap]” “NeverShowExt”
regset "[HKEY_CLASSES_ROOT\ShellScrap]"
"AlwaysShowExt"=""

 regdelete "[HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Layers]" "{name of value
whose (name of it contains "BigFix.exe") of key
"HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Layers" of registry}"

Note: You cannot use regdelete to delete an entire key, just values. To delete a key,
you will have to use a .reg file.

Keyword Parameters
Regdelete <“registry key”> <“value name”>

 ©2005 by BigFix, Inc.

66

Practice Problems:

Comments
//

Lines beginning with // are comments and are ignored during action execution.

SYNTAX

EXAMPLE
 // The following command will replace the file on the C
drive
copy “{name of drive of windows folder}\win.com" “{name of
drive of windows folder}\bigsoftware\win.com"

Other Action Commands

action requires restart

The action requires restart command informs the client that the
current action will not be completed until the next restart completes. Once this
action has been completed on a computer, the inspector pending restart

Keyword Parameters
//

7. Write a custom Fixlet message that will create the Key
HKEY_Local_Machine\Software\Corporate with the value “Department” =
“Engineering”. Write relevance so that this Fixlet will only apply to computers
without this registry value.

8. Write a script that will add an “InstallLocation” value to the BES Client registry

key. The value should contain the current path of BES Client.

Link to Answers

 ©2005 by BigFix, Inc.

67

will return true. If there is an action requires restart command in an
action, the BigFix Enterprise Console will report Pending Restart until the
affected computer is restarted. This command is useful when running
installations that will not complete until the computer is restarted.

SYNTAX

EXAMPLE

 wait __Download\323255USA8.EXE /q:a /r:n
action requires restart

Action may require restart

The action may require restart command will set the pending
restart inpector to true if it detects that files will be replaced on the system
upon reboot. This is useful in cases where a patch will requires a restart in certain
circumstances but not in others. If it detects that files will be replaced, it will also
cause the client to report its action status as Pending Restart until the computer is
rebooted

SYNTAX

EXAMPLE

 wait __Download\323255USA8.EXE /q:a /r:n

 action may require restart

action parameter query

This action parameter query command allows data entry of parameters
to be available via relevance during action execution. Parameter names may
include blanks, and are case sensitive. The parameter name, description, and value
must each be enclosed inside double quotation marks (").

Keyword Parameters
action requires restart

Keyword Parameters
action may require restart

 ©2005 by BigFix, Inc.

68

SYNTAX

EXAMPLE
 action parameter query "Registry key" with description
"Please enter your desired registry key" and with default
value "null"

 action parameter query "InstallationPoint" with
description "Please enter the location of the shared
installation point:”

regset “[HKEY_LOCAL_MACHINE\Software\BigFix]”
“InstallInfo”=”{escapes of (parameter “InstallationPoint”
of action)}”

TECHNICAL NOTES
The parameter value may include %## where ## are hex digits to specify the
character you want to embed. You can find the hex code for characters using any
ascii table. To embed a percent sign, use %25. To embed a double quote, use
%22.

To retrieve the action parameter value, for example in relevance substitution use:
{parameter "paramname" of action}

set clock

The set clock command causes the client to reregister with the registration
server, and to set its clock to the time received from the server during the
interaction. This is useful when the client’s clock is out of sync. This command is
not available when the client is operating under an evaluation license.

SYNTAX

EXAMPLE
 set clock

restart

Keyword Parameters
action parameter query "<parameter name>" [with description "<description>"] [and]

[with default [value] "<default value>"]

Keyword Parameters
set clock

 ©2005 by BigFix, Inc.

69

The restart command causes the Windows client to restart the computer. If a
user is logged in, it places a dialog up and waits for the user to press a button in
the dialog labeled 'Restart'. This allows the user to save his/her work before
restarting. Once the user presses the restart button, the client politely uses an API
to request a system restart. If an application refuses the request, the dialog stays
up and waits for the user to press the 'Restart' button again. If a user is not logged
in, the command will force a restart.

In order to force a restart, you can give a numerical parameter after the command.
This will force the computer to restart in the number of seconds you have
inputted.

SYNTAX

EXAMPLE
 run __Download\IE55SP2.exe
action requires restart
restart

Practice Problems:

Keyword Parameters
Restart <time to force restart>

9. Write a custom task that will force a restart of computers. Use an action parameter query to
prompt the user to give the number of seconds in which to force the restart. Have the default
value be 120. This task should be relevant on computers pending a restart.

Link to Answers

 ©2005 by BigFix, Inc.

70

Practice Problem Answers:

1. Write a custom action to perform the following actions:

- Rename the file “test1.txt” within the directory “C:\Windows” to “test2.txt”
(You can rename a file my moving it to the same directory with a new name)

- Create a backup copy of “test2.txt” called “test2bak.txt” within the same
directory (Remember to use a ‘delete’ command before you move or copy)

Action:
 Delete c:\windows\test2.txt

 Move c:\windows\test.txt c:\windows\test2.txt

 Delete c:\windows\test2bak.txt

 Copy c:\windows\test2.txt c:\windows\test2bak.txt

Relevance:
 Exists file “c:\windows\test2.txt”

2. How would I copy the file “acpi.sys” from the <system>\drivers folder to “c:\”?
Write relevance to ensure “acpi.sys” exists. Since acpi.sys won’t go away, this
relevance won’t falsify, so it would be appropriate for this to be a Task.
(Remember you can substitute relevance in curly braces {} to find variables like
the system folder)

Action:
 Delete c:\temp\acpi.sys

 Copy {pathname of system folder}\drivers\acpi.sys
c:\acpi.sys

Relevance:
 Exists file “acpi.sys” of folder “drivers” of
system folder AND not exists file “acpi.sys” of
folder “c:\”

3. Write a custom Task that will add the contents of a .reg file ‘c:\test.reg’ to the

registry. This is done by running the regedit.exe program, passing in test.reg as a
parameter. Regedit.exe is in the windows folder. In order to make regedit.exe
run silently, you can use the –s switch. Write relevance to make sure test.reg
exists. In order to test this action, you’ll have to create test.reg on a test computer.
Note: this relevance will not falsify.

Action:

 ©2005 by BigFix, Inc.

71

 Run {pathname of windows folder}\regedit.exe –s
c:\test.reg

Relevance:
 Exists file “c:\test.reg”

 4. Write a custom task to restart the DHCP service. Send ‘net start’ and net stop
output to a log file located at “c:\BESlogs\DHCPlog.txt”. You can send output to a file
using the ‘>’ and ‘>>’ dos commands. You’ll need to create the directory “c:\BESlogs”.
For this exercise, just get the action right- we’ll worry about relevance next.

 Dos Mkdir c:\BESlogs

 Dos net stop “DHCP” > c:\BESlogs\DHCPlog.txt

 Dos net start “DHCP” >> c:\BESlogs\DHCPlog.txt

 5. Write relevance for the above task. This task should be relevant as long as the
DHCP service is running. Also, have the relevance check the log file so that once the
service has restarted successfully, the task becomes non-relevant. You can do this by
checking that line 5 of the file contains “The DHCP Client service was stopped
successfully”.

 (Exists running service “DHCP”) AND (Not Exists
file “c:\BESlogs\DHCPlog.txt” OR line 5 of file
“c:\BESlogs\DHCPlog.exe” as lowercase does not
contain “the dhcp client was stopped successfully”)

6. Try downloading a Microsoft security patch . Write the download command, the

the correct continue if statement, and then run the patch.

Action:
 download
http://download.microsoft.com/download/a/f/a/afa937
e7-e7f4-4fe8-8324-6e322f7ab542/WindowsXP-KB840374-
x86-ENU.EXE

 continue if {(size of it = 874264 and sha1 of it =
"74275b7835faf252ee522d1f8dff49ac43a82a90") of file
"WindowsXP-KB840374-x86-ENU.EXE" of folder
"__Download"}

 wait __Download\WindowsXP-KB840374-x86-ENU.EXE
/quiet /norestart

Relevance:

 ©2005 by BigFix, Inc.

72

 not exists key
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\Wind
ows XP\SP2\KB840374" of registry

7. Write a custom Fixlet message that will create the Key

HKEY_Local_Machine\Software\Corporate with the value “Department” =
“Engineering”. Write relevance so that this Fixlet will only apply to computers
without this registry value.

Action:

 Regset “[HKEY_Local_Machine\Software\Corporate]”
“Department”=”Engineering”

Relevance:
 Not exists key "HKLM\Software\Corporate" whose
(value "Department" of it = "Engineering") of
registry

8. Write a script that will add an “InstallPath” value to the BES Client registry key

that contains the current path of BES Client.

Action:
 Regset
“[HKEY_Local_Machine\Software\EnterpriseClient]”
“InstallPath”=”{escapes of pathname of regapp
“Besclient.exe”}”

Relevance:
 Not exists key “HKLM\Software\EnterpriseClient”
whose (exists value “InstallPath” of it) of
registry

9. Write a custom task that will force a restart of computers. Use an action

parameter query to prompt the user to give the number of seconds in which to
force the restart. Have the default value be 120.

Action:

 action parameter query "RestartTime" with
description "Please enter your desired restart
time" with default value "120"

 restart {parameter “RestartTime” of action}

Relevance
 Pending restart

 ©2005 by BigFix, Inc.

73

Appendix A: QNA Error
Messages

 This document is intended to be a quick reference on how to use relevance
interpreter error message to debug queries written in the BigFix Relevance Language.
This document contains the most common error messages with explanations or each and
suggestions on how to troubleshoot them.

Singular Expression Refers to Non-Existent Object

This is probably the most common error message you will receive. It usually results from
querying a property of an object that does not exists, or querying a non-existent property
of an object.

For instance, the query:

 Version of file “misspelled.dll” of folder
“c:\temp”

will return Singular expression refers to non-existent object if any of the following
conditions are true:

1. The folder “c:\temp” does not exists
2. There is no file named “misspelled.dll” in the folder “c:\temp”
3. The file “misspelled.dll” located in the folder “c:\temp” does not have a version

Singular Expression Refers to Non-Unique Object

This error message arises when you try to query a singular property of multiple objects.
For instance:

 Version of files of system folder

Will return the version of the first file it finds and then the error message Singular
Expression refers to non-existent object. If you want to output a list of all the
properties of a list, make sure to make the queries plural. For instance,

 Versions of files of system folder

 ©2005 by BigFix, Inc.

74

will return a list of all the versions. If you want a single return value, you have to make
sure to just query one object. If you want to return a list of properties, the inspector must
be plural.

A Singular Expression Is Required

This error message results from trying to compare two lists or a list to an object. In
general, all comparisons must be made between two singular objects. For instance:

 Versions of files of folder “c:\temp2” = versions
of files of folder “c:\temp”

Will return A singular expression is required because comparing two lists is undefined.
This will error out even if both folders contain exactly the same files. Similarly,

 Versions of files of folder “c:\temp” = “4.5”

Gives the same error because you can’t compare a list to a single value. You will get this
error even if there is only one file in the folder “c:\temp” whose version is 4.5.

The Operator “<bad_command>” is Undefined

You will receive this message if you use a word that relevance interpreter does not
recognize, or if you use invalid commands on an object. Here are some examples:

 Exists executable “file_name.exe” of system folder

This will return The operator "executable" is not defined since the word ‘executable’
is not a valid command in the relevance language.

 Version of key “HLKM/Software” of registry

This will return The operator "version" is not defined. Even though the relevance
language knows the word ‘version’, it does not recognize it as a valid property of registry
key, and therefore errors out.

The Operator “String” is not defined

This is a very common error message that indicates that you are trying to return an object
that has no default return value. In order to remedy it you just need to query a property of
that object. For instance.

 ©2005 by BigFix, Inc.

75

 Key
“HKEY_LOCAL_MACHINE\SOFTWARE\BigFix\EnterpriseClient”
of registry

Will return The Operator “String” is not defined. Although the statement above
correctly defines an object that does exist, the relevance language just doesn’t know what
you want to know about that object. Instead, you have to either query a property of the
object or ask its existence.

 Exists Key
“HKEY_LOCAL_MACHINE\SOFTWARE\BigFix\EnterpriseClient”
of registry

 Value “Version” of Key
“HKEY_LOCAL_MACHINE\SOFTWARE\BigFix\EnterpriseClient”
of registry

This Expression Could Not Be Parsed

The first step of interpreting a relevance statement is parsing the expression into its
various components. The above message results from a failure of the parsing engine.
This is usually caused by unmatched parentheses or by syntax errors involving certain
‘reserved words’ used by the parsing engine. Reserved words are syntactical statements
like ‘of’, ‘and’, ‘equals,’ and so on. Here are a couple of examples:

 Name of (file whose (version of it = “2.6”) of
system folder

This will return This expression could not be parsed because it has more open
parentheses than closed ones. The expression:

 Exists file “name” of or system folder

Will return the same error message due to the nonsensical use of the reserved words ‘of’
and ‘or’.

A Boolean Expression is Required

This error message is produced when a statement needs a boolean value to evaluate, but
instead the expression returns a different return type. A boolean value is required after
‘if’ and ‘whose’. For example, the parenthetical statement after the ‘whose’ in a whose/it
clause does must return a Boolean value. For instance:

 ©2005 by BigFix, Inc.

76

 Names of files whose (version of it) of system
folder

The parenthetical statement after whose must return a boolean value for expression to
make any sense. Since the relevance interpreter is expecting a Boolean value and instead
finds a version, it returns the error A boolean expression is required. Instead the
statement should be something like this:

 Name of files whose (version of it = “5”) of system
folder

The same problem exists in if/then/else statements.

 If regapp “besclient.exe” then version of regapp
“besclient.exe” as string else “N/A”

This will error out because a boolean expression is required after the ‘if’. Instead, the
statement should read.

 If exists regapp “besclient.exe” then version of
regapp “besclient.exe” as string else “N/A”

It Used Outside of Whose Clause

This is an especially confusing error message because it is perfectly legal to use ‘it’
without a ‘whose’ clause as long as you form the syntax correctly. This message just
means that interpreter does not know what ‘it’ refers to, meaning that there is some
syntax error related to the word ‘it’. For example:

 system folder (name of it & pathname of it)

Returns It used outside of whose clause since the interpreter does not know what ‘it’ is,
as the statement is formulated incorrectly. The correct statement would be:

 (name of it & pathname of it) of system folder

To ensure that ‘it’ points toward an object, you must make sure that you include ‘of
<object>’ after any statement involving ‘it’ (but not ‘whose’).

A String Constant Had No Ending Quotation Mark

This message is fairly self-explanatory. It simply means that there was an uneven
number of quotation marks in the expression. Here is an example:

 ©2005 by BigFix, Inc.

77

 Version of file “mshtml.dll of system folder

A String Constant had an Improper % Sequence

You can insert characters into a string by entering a percent sign and then the Ascii hex
value of the character. If you use enter a percent sign in a string, the relevance engine
looks at the next two characters to see if they correspond to an Ascii hex value. For
instance:

 “I’m telling the %22truth%22”

Returns I’m telling the “truth”. A string with a percent sign in it will return A string
constant had an Improper % Sequence if any of the following conditions are true:

1. There are less than two characters in the string after the percent sign.
2. Any of the two characters following the percent sign are not standard letters or

numbers.

You won’t get the error message if the percent sign is followed by letters or numbers but
they don’t correspond to an Ascii value. For instance:

 “hello said %7 ”

Will return A string constant had an Improper % Sequence since the second character
after the percent sign is white space. However, the following command:

 “hello said %9dgsn”

Will return hello said %9dgsn since even though ‘%9d’ isn’t an Ascii hex value, since
both characters are letters and numbers the statement won’t error out.

This Expression Contained a Character Which is Not Allowed

This error message is given when the relevance interpreter finds a character that it does
not recognize. You can use any character you want in a string (except “), but outside of a
string a random character will break the relevance statement. For instance:

 {pathname of regapp “besclient.exe”}

 ©2005 by BigFix, Inc.

78

Will return This Expression Contained a Character Which is Not Allowed because
curly braces are not valid in the relevance language. (Although they do signify relevance
substitution in an action script.)

Incompatible Types

There are certain inspectors that look for return values of the same type. If different
types are returned, the relevance interpreter returns Incompatible Types. The first
example is with an if/then/else statement. An if/then/else statement will either return the
expression after ‘then’ or after ‘else’. Both of these expressions must return the same
object. For instance:

 If exists regapp “Besconsole.exe” then version of
regapp “Besconsole.exe” else “Not Installed”

Returns Incompatible Types. This is because the ‘then’ expression returns a version,
while the ‘else’ expression returns a string. Instead you need to make sure that both
statements return the same type by converting the version to a string.

 If exists regapp “Besconsole.exe” then version of
regapp “Besconsole.exe” as string else “Not
Installed”

The same issue exists when you create lists with semicolons.

 running applications; names of recent applications

This returns Incompatible Types since it is trying to create a list made up of running
applications and strings.

No Inspector Context

Certain inspectors can only be evaluated by the BigFix Enterprise Client and therefore
will not work in QNA. If you try to evaluate one of these in QNA, you will receive No
Inspector Context. The most common example is:

 Pending restart

In general, in order to evaluate statements that return No Inspector Context you must
define them as retrieved properties in the BigFix Enterprise Console.

 ©2005 by BigFix, Inc.

79

Appendix B: Strategies for
Fixlets

While this guide gives an overview of the relevance and action lanaguages, sometimes
the greatest difficulty in writing a Fixlet message comes from breaking down a
complicated issue into pieces and learning how to convert these pieces into relevance
statements. This section helps you develop strategies on how to go through this process.

There’s also the issue of patches/software updates that require a restart. This section will
go over techniques to deal with this situation appropriately.

The information in this section applies to both Fixlets and tasks, but the difference
between the objects is relevant. By default, a Fixlet will report ‘Fixed’ only if its
relevance has been falsed after the application of its action. Therefore, you have to make
sure that at least one relevance clause will turn to false once the action has been run.
Tasks, on the other hand, will report ‘Fixed’ once all the lines of the action have been
run. Therefore, you may worry less about the relevance falsifying.

Using relevance to check for a certain Problem

When confronted with a complicated problem, it can sometimes be difficult to see how it
directly translates into relevance. The first task is to figure out what are the deterministic
characteristics of a problem. As an example, let’s study Microsoft Security Bulletin
MS02-023. You can find it here:

 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bull
etin/MS02-032.asp

This bulletin warns of a security vulnerability in Windows Media Player, and advises that
all users with Windows Media player apply the patch. Since there are different patches
for each version of media player, we’ll need to write a separate Fixlet messages for each
version. For now, let’s try to write a Fixlet message for Windows Media Player for
Windows XP. First of all, we need to determine exactly which characteristics cause this
problem. After reading the security bulletin, we notice three things we need to check for:

1. The operating system must be Windows XP.
2. Windows Media Player for Windows XP must be installed.
3. The vulnerability can’t have been closed. This can happen in two ways:

a. They installed the patch already.
b. They installed Windows XP Service Pack 1.

 ©2005 by BigFix, Inc.

80

As an intermediate step, lets try converting these requirements into pseudocode, just to
practice thinking about problems in terms of relevance.

a. We’ll use name of operating system and csd version of
operating system to make sure the Windows XP is installed with no
service packs.

b. In order to find Windows Media Player for Windows XP, we can either
look for a registry key identifying the product, or we can check for the
existence and correct version of its regapp.

c. In order to make sure the patch hasn’t already been installed, we can either
check the file version of a file that’s been updated by the patch (maybe the
regapp) or look for evidence of the patch in the registry.

Now, we just have to convert these characteristics into relevance clauses.

1. First, use the name of operating system command

 name of operating system = “WinXP”

There are a few ways to check that there is no service pack:

1. csd version of operating system != “Service Pack 1”
2. csd version of operating system = “”
3. csd version of operating system does not contain “Service Pack”
4. not (csd version of operating system >= “Service Pack 1”)
5. not exists csd version of operating system

Again, this is partly a matter of style, but the different options aren’t exactly the
same. First of all, it is highly possible that the user will at some point in the future
upgrade to Service Pack 2 (even though it might not exist yet). The first option
will revert to TRUE once they upgrade past Service Pack 1, which isn’t the
desired behavior. Another thing to worry about is if Microsoft has released a
version of Windows XP with that will return strange non-standard CSD values.
For example, this may happen for a beta release of an operating system of service
pack. Unfortunately, this is hard to know because you do not have every release
of Windows XP to test with. In cases like these, you should try to use a relevance
clause that covers the most possible cases, but will not cause a problem on
potential non-standard responses.

2. There are a few ways to check for Windows Media Player for Windows XP. First
of all, you could check for a registry key:

 Exists key
“HKLM\Software\Microsoft\MediaPlayer\8.0” of
registry

 ©2005 by BigFix, Inc.

81

Also, you could try finding the regapp. Since there are different versions of
Media Player, we’ll need to check the version also. Media player for Windows
XP is version 8.

 Exists regapp “wmplayer.exe” AND version of regapp
“wmplayer.exe” = “8”

In this case, either of these statements should work. Under certain conditions, it
could be better to check either the regapp or the registry key, but usually it doesn’t
matter.

3. According to the security bulletin, the patch creates a registry key when it is run,

so we can check for that:

 not exists key
“HKLM\SOFTWARE\Microsoft\Updates\Windows Media
Player\wm320920” of registry

Alternatively, we could check that files are updated. By extracting the patch, you
can find out that it replaces the ‘wmplayer.exe’ executable with version
“8.0.0.4482”

 Version of regapp “wmplayer.exe” < “8.0.0.4482”

In this case, it seems like either of these clauses would work fine. One thing to
consider when checking a file is that the file will not be replaced until the
computer is restarted if it is in use. Therefore, if the user is running media player
when the patch is run, the relevance will not evaluate to false until the computer
restarts. This isn’t necessarily a problem, especially with the use of the ‘action
requires restart command’, but it’s something to keep in mind.

Ok now let’s review our final relevance for this problem:

1. Check for correct operating system:
 Name of operating system = “WinXP” AND not exists
csd version of operating system

2. Check for Windows Media Player:

 Exists regapp “wmplayer.exe” AND version of regapp
“wmplayer.exe” = “8” and version of regapp
“wmplayer.exe” < “8.0.0.4482”

3. Make sure the patch isn’t installed:

 ©2005 by BigFix, Inc.

82

 not exists key
“HKLM\SOFTWARE\Microsoft\Updates\Windows Media
Player\wm320920” of registry

If you are using BDE to develop the Fixlet, these will be your three Relevance clauses.
In terms of actual evaluation, the three causes will bee ANDed together. If you are
authoring from the BES Console, you will need to create the whole relevance clause
yourself by connecting all the parts with ANDs. Total relevance:

 (Name of operating system = “WinXP” AND not exists
csd version of operating system) AND (Exists regapp
“wmplayer.exe” AND version of regapp “wmplayer.exe”
= “8” and version of regapp “wmplayer.exe” <
“8.0.0.4482”) AND (not exists key
“HKLM\SOFTWARE\Microsoft\Updates\Windows Media
Player\wm320920” of registry)

Although it may have seemed complicated at first, the final relevance is really quite
simple. This is usually the case. It takes a little while to get familiar with the Relevance
Language, but with a little experience writing good relevance should be quick and easy.
In the fourth section, I’ll give some examples such as this where you can craft your own
relevance and actions in response to an issue.

BigFix, Inc.
6121 Hollis Street
Emeryville, California
94608
[t] 510 652-6700
[f] 510 652-6742
[e] info@bigfix.com

Worldwide Sales
[t] 510 652-6700 x116
[f] 510 652-6742
[e] sales@bigfix.com

 ©2005 by BigFix, Inc.

83

© 1998–2005 BigFix, Inc. All rights reserved.

BigFix®, Fixlet® and "Fix it before it fails"® are registered trademarks of BigFix, Inc. iprevention,
Powered by BigFix, Relevance Engine, and related BigFix logos are trademarks of BigFix, Inc. All
other product names, trade names, trademarks, and logos used in this documentation are the
property of their respective owners. BigFix’s use of any other company’s trademarks, trade
names, product names and logos or images of the same does not necessarily constitute: (1) an
endorsement by such company of BigFix and its products, and (2) an endorsement of the
company or its products by BigFix.

